国产良妇出轨视频在线_国产高清无码视频在线观看_国产精品亚洲精品久久精品_国产男女猛视频在线观看网站

你的位置:首頁 > 互連技術(shù) > 正文

Tesla雷達(dá)天線淺析

發(fā)布時間:2023-10-13 責(zé)任編輯:wenwei

【導(dǎo)讀】前段時間Tesla重拾雷達(dá)的消息擾動了整個行業(yè),甚至擾動了資本市場。網(wǎng)絡(luò)上也放出來幾張雷達(dá)PCB及實物尺寸圖。本期邀請了一份技術(shù)稿,對這款雷達(dá)做一些基本的分析,和大家一起探討,如有錯誤之處,期待各位讀者朋友及同仁的指導(dǎo)。


根據(jù)xx的測試報告,行業(yè)研究指出Tesla雷達(dá)采用TI 2243雙芯片級聯(lián)方案。TI官網(wǎng)給出的芯片發(fā)射功率為13dBm,RX noise figure:12dB。從測試報告里可以看出,Tesla雷達(dá)采用FMCW工作體制,工作頻率為76-77GHz,且雷達(dá)支持三種工作模式(文件中定義為Mode3,Mode4和Mode5),三種工作模式的掃頻帶寬分別為210MHz,400MHz和700MHz,斜率一樣。


1694421489426536.png

模式特性


1694421477621819.png

工作模式


1694421463560440.png

不同模式的參數(shù)配置


產(chǎn)品尺寸:196 mm (Length)×82 mm (Width)×40 mm (Height)。由于沒有相應(yīng)的板材信息,根據(jù)其他廠商雷達(dá)的材料選型,文中的仿真材料選用Rogers3003,為常用材料,介電常數(shù)3,損耗正切角0.001。


1694421442189772.png

雷達(dá)實物圖


26.jpg

雷達(dá)PCB


使用微帶轉(zhuǎn)SIW結(jié)構(gòu),雷達(dá)屏蔽罩可實現(xiàn)全接地方式,達(dá)到更好的電磁屏蔽效果。雷達(dá)采用內(nèi)置微帶天線,總增益20.32dBi,雷達(dá)有6個發(fā)射天線,但只有4個天線能同時發(fā)射,單天線最大增益14.3dBi,總增益=單根天線增益值+10log(同時發(fā)射天線個數(shù))=14.3dBi+10log4=20.32dBi。同時還給出了單天線的俯仰和方位波束寬度。


1694421408656084.png


1694421396386595.png

天線信息


FCC法規(guī)中§ 95.3367(a)章節(jié)對 76-81 GHz 頻段雷達(dá)輻射功率限制如下:76-81 GHz 頻段內(nèi)的基本輻射發(fā)射限制以等效全向輻射功率 (EIRP) 表示,如下所示:(a) 根據(jù)使用具有 1 MHz 分辨率帶寬 (RBW) 的功率平均檢測器的測量結(jié)果,76-81 GHz 頻帶內(nèi)的最大功率 (EIRP) 不得超過 50 dBm。(b) 根據(jù)使用具有 1 MHz RBW 的峰值檢測器的測量結(jié)果,76-81 GHz 頻帶內(nèi)的最大峰值功率 (EIRP) 不得超過 55 dBm。根據(jù)ISEDC RSS-251第8.1章節(jié),根據(jù)使用具有1 MHz 分辨率帶寬 (RBW) 的功率平均檢測器的測量結(jié)果,測試功率為占用帶寬內(nèi)的總功率,且最大峰值功率不得超過55dBm。


1694421380509049.png

Peak fundamental Emission


Tesla雷達(dá)的三種工作模式下的Peak EIRP測試結(jié)果如下表:


1694421364864640.png

測試值


接下來,將對測試結(jié)果進(jìn)行分析(增益和發(fā)射功率均以最大值計算):


根據(jù)測試報告,可以得出單天線性能(最大增益14.3dB,3dB方位波束寬度48°,俯仰14°)。芯片發(fā)射功率TX power=13dBm,Mode 3 Max EIRP=31.54 dBm,Mode 4 EIRP=32.97 dBm以及Mode 5 EIRP=36.19 dBm。測試結(jié)果中是以的PSA reading是以dBuV/m為單位,需要轉(zhuǎn)換到dBm。根據(jù)ANSI C63.10-2013 Section 10.3.9,在距離為3m的測試場景下,dBuV/m到dBm的轉(zhuǎn)換公式是EIRP(dBm)=E(dBuV/m)-95.3。E(dBuV/m)對應(yīng)上表中的Corrected Field Strength(dBuV/m at 3m)。


假設(shè)存在單天線發(fā)射模式,此時天線增益14.3dBi,芯片功率13dBm,在系統(tǒng)損耗(x)一定的情況下,峰值EIRP=14.3+13-x=27.3-x,此種工作模式下的最大EIRP值無法到達(dá)前面的Mode3、4、5中的EIRP值,因此雷達(dá)不存在單發(fā)模式。兩芯片級聯(lián)并且同時工作時,總的發(fā)射功率Tx total=Tx power+10log2=16.01dBm。同時,不同個數(shù)的天線同時發(fā)射時的增益值如下:單根天線天線發(fā)射增益:14.3dBi;兩根天線同時發(fā)射時增益為17.3dBi;三發(fā)和四發(fā)增益分別為19.07dBi和20.32dBi;因為Mode5的EIRP為36.19dBm,結(jié)合芯片功率和損耗值可知Mode5的工作模式為雙芯片4發(fā)。對比Mode4和Mode5之間的EIRP差值(3dB),可以推導(dǎo)出Mode4的工作模式為雙芯片雙發(fā),Mode3的工作模式為單芯片三發(fā)。(以上推論是作者基于測試報告中已給出的工作模式和測試值,計算公式為EIRP=Tx power+Antenna Gain-Loss,是否存在其他工作模式,尚無法確認(rèn))。


天線布局見下圖(未加屏蔽罩及SIW結(jié)構(gòu)),根據(jù)單個接收天線的尺寸做比擬,以半波長間距為基準(zhǔn),得到發(fā)射天線和接收天線的間距。兩芯片級聯(lián),其中芯片1的三發(fā)處于同一水平面,無俯仰向區(qū)分,間距6倍波長。芯片2(Tx3-Tx5)的三個發(fā)射天線俯仰向相差2倍波長,水平間距3倍波長。PCB表層采用人工電磁表面結(jié)構(gòu),可減小紋波抖動。


1694421341787224.png

天線布局圖


1694421313646928.png

接收天線


1694421300533876.png

接收天線方向圖@76GHz


接收天線,Port1和Port2之間的性能差異在方位面角度上,Port2方位面角度約120°,Port1方位面角度50°(3dB),推斷短距離模式用上圖接收天線中的Port2和Port7來工作。


為實現(xiàn)屏蔽罩全接地,天線采用SIW轉(zhuǎn)換結(jié)構(gòu),對加載SIW結(jié)構(gòu)的RX天線組進(jìn)一步仿真,由于SIW結(jié)構(gòu)的寬度主要影響截止頻率,因此在沒獲得準(zhǔn)確的參數(shù)的前提下,仿真結(jié)構(gòu)的截止頻率可能和Tesla用的SIW結(jié)構(gòu)存在差異。對SIW結(jié)構(gòu)做阻抗匹配,并代入天線饋電端口,接收天線的隔離度大于-20dB,由于未對Port2上的功分器做過多的匹配設(shè)計,因此Port2和Port3之間存在一定頻偏量;


1694421276160044.png

加載SIW結(jié)構(gòu)的S參數(shù)


1694421265474450.png

增加屏蔽罩金屬地的S參數(shù)


在SIW結(jié)構(gòu)上增加金屬接地,模擬屏蔽罩的影響(受仿真時間限制,未將整個屏蔽罩設(shè)計進(jìn)去),增加接地金屬前后S參數(shù)并未產(chǎn)生明顯偏移和畸變,兩者基本重合。且SIW結(jié)構(gòu)在76.5GHz處的電場均勻分布在波導(dǎo)管內(nèi)。


1694421219910985.gif

SIW的電場分布@76.5G


加載了SIW結(jié)構(gòu)的天線仿真性能如下,由于SIW結(jié)構(gòu)比較短,因此整體損耗并不大。


1694421199245089.png

加載SIW結(jié)構(gòu)的天線性能


由于尚不清楚工作時天線的選擇方式,以及移相器配置,因此無法知曉具體的發(fā)射天線工作方式。根據(jù)上面的不同模式推理,感興趣的讀者可以嘗試選擇不同的發(fā)射天線進(jìn)行組合,對可能的組合形式做進(jìn)一步仿真分析,可以明確的是,不同的發(fā)射天線組合形式勢必會增強(qiáng)天線增益強(qiáng)度和天線FoV的變化。


總結(jié):


1.仿真結(jié)果的峰值天線增益未達(dá)到14.3dBi,因此仿真模型里天線陣元間距及尺寸還有優(yōu)化空間,另外SIW結(jié)構(gòu)的阻抗也可以進(jìn)一步優(yōu)化。值得借鑒的是采用SIW結(jié)構(gòu)實現(xiàn)天線罩全接地的設(shè)計方案,有利于進(jìn)一步屏蔽芯片端對天線的射頻干擾。


2.單天線性能比較常規(guī),難點(diǎn)在于天線布局,文章僅對天線本體性能作仿真驗證,尚未牽扯到虛擬列、稀疏陣等天線布局仿真分析;

雷達(dá)采用德州儀器的2243芯片,F(xiàn)MCW工作體制,雖然2243支持76-81 GHz,但為了符合法規(guī),但雷達(dá)帶寬將被天線限制在76-77GHz。中心頻率為76.5GHz,雙芯片級聯(lián)實現(xiàn) 6 個 TX 和 8 個 RX 通道,最大虛擬通道數(shù)為 48。芯片發(fā)射功率13dBm,接收天線和發(fā)射天線都為13dBi,饋線和介質(zhì)損耗LTx=5dB,LRX=3dB,天線罩雙向損耗=2dB,保險杠雙向損耗2dB,NTD=3,Nvirtual=19。


1694421179847645.png


根據(jù)以上參數(shù),代入雷達(dá)方程,則可以得到不同RCS下雷達(dá)的最遠(yuǎn)探測距離關(guān)系。


1694421163560826.png

RCS vs Distance


40.jpg

PCB和關(guān)鍵尺寸


MIMO 虛擬孔徑分析


見上圖,第一種(藍(lán)色線條)是增加方位角范圍來提升角度分辨率的模式。該模式下無法進(jìn)行遠(yuǎn)距離測量,同時虛擬陣元的間距(~1.2 波長)。


第二種(橙色線條)是提供目標(biāo)位置的方位角和仰角測量的模式,主要增加俯仰探測能力。


41.png

Rx 天線(圖片來源:Ghostautonomy)


第二個和第三個(左起)RX 天線具有與其他接收天線方位面角度及間距不一樣。這樣設(shè)計的好處在于可以靈活配置8個RX的工作狀態(tài);


要獲得更高角度分辨率,可以用Rx2和Rx3同時工作,此時天線性能和其余接收天線一致,而且變?yōu)榱碎g距4.5mm的均勻陣列(若Rx2和Rx3都采用和其余接收天線一樣的形式,雖然接收天線孔徑變大,但在發(fā)射天線位置固定的前提下,虛擬陣列重疊的個數(shù)會增加,利用率降低)。此時重疊的虛擬陣元為2個。為獲得更低的旁瓣電平,只使用接收天線1-4,此時為非均勻陣列,但兩者的方位角度是不一樣的。


1694421131978057.png

1694421112902623.png

不同模式的虛擬陣列分布


1694421101393809.png

不同模式的方向圖


上面給出了不同模式下的虛擬陣列形式,且給出了相應(yīng)的方向圖結(jié)果。Tesla天線布局不僅實現(xiàn)了高分辨率同時優(yōu)化了旁瓣電平。


1694421084459097.png

不同發(fā)射組合俯仰


1694421072242349.png

不同發(fā)射組合方位


根據(jù)參數(shù)優(yōu)化后的性能見上;


來源:雷達(dá)天線站



免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。


推薦閱讀:


BLE藍(lán)牙模塊功能應(yīng)用① — 主從一體

奧拉股份:無磁傳感器芯片及解決方案

基于芯??萍糃S32F116Q的汽車智能尾燈應(yīng)用案例

國科光芯:專注氮化硅硅光技術(shù),探索硅光產(chǎn)業(yè)發(fā)展新路徑

瑞薩運(yùn)動傳感器助力生活更智能

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
壓控振蕩器 壓力傳感器 壓力開關(guān) 壓敏電阻 揚(yáng)聲器 遙控開關(guān) 醫(yī)療電子 醫(yī)用成像 移動電源 音頻IC 音頻SoC 音頻變壓器 引線電感 語音控制 元件符號 元器件選型 云電視 云計算 云母電容 真空三極管 振蕩器 振蕩線圈 振動器 振動設(shè)備 震動馬達(dá) 整流變壓器 整流二極管 整流濾波 直流電機(jī) 智能抄表
?

關(guān)閉

?

關(guān)閉