国产良妇出轨视频在线_国产高清无码视频在线观看_国产精品亚洲精品久久精品_国产男女猛视频在线观看网站

你的位置:首頁 > 互連技術(shù) > 正文

可識別時(shí)間序列數(shù)據(jù)趨勢的嵌入式人工智能系統(tǒng)

發(fā)布時(shí)間:2024-08-23 責(zé)任編輯:lina

【導(dǎo)讀】技術(shù)創(chuàng)新通常會在幾十年內(nèi)掀起改變?nèi)祟惿畹睦顺保弘娏Α⒂?jì)算機(jī)、互聯(lián)網(wǎng)。最近的浪潮是人工智能 (AI)。自誕生以來,人工智能主要局限于大型計(jì)算平臺。然而,先進(jìn)處理器技術(shù)和高效人工智能網(wǎng)絡(luò)的融合帶來了突破性創(chuàng)新,使人工智能可以在嵌入式系統(tǒng)中運(yùn)行。這些系統(tǒng)通常配備專門的人工智能專用處理器和支持機(jī)器學(xué)習(xí)的傳感器,可實(shí)現(xiàn)前所未有的“邊緣”功能。


技術(shù)創(chuàng)新通常會在幾十年內(nèi)掀起改變?nèi)祟惿畹睦顺保弘娏?、?jì)算機(jī)、互聯(lián)網(wǎng)。最近的浪潮是人工智能 (AI)。自誕生以來,人工智能主要局限于大型計(jì)算平臺。然而,先進(jìn)處理器技術(shù)和高效人工智能網(wǎng)絡(luò)的融合帶來了突破性創(chuàng)新,使人工智能可以在嵌入式系統(tǒng)中運(yùn)行。這些系統(tǒng)通常配備專門的人工智能專用處理器和支持機(jī)器學(xué)習(xí)的傳感器,可實(shí)現(xiàn)前所未有的“邊緣”功能。


這些功能使預(yù)測性維護(hù)達(dá)到了新的水平。嵌入式人工智能加速技術(shù)可防患于未然,而無需人工參與。本文將介紹幾種可在邊緣實(shí)現(xiàn)人工智能算法的新型處理器技術(shù)。


嵌入式人工智能系統(tǒng) 


支持人工智能的微控制器和 MEMS 傳感器是預(yù)測性維護(hù)人工智能革命的前沿。這些設(shè)備的特點(diǎn)是體積小、功耗低,并且能夠加速與人工智能相關(guān)的特定數(shù)學(xué)函數(shù)。傳統(tǒng)的嵌入式處理器與人工智能內(nèi)核和/或傳感器模塊相結(jié)合,使設(shè)備能夠?qū)崟r(shí)分析和響應(yīng)現(xiàn)實(shí)世界中基于時(shí)間序列的數(shù)據(jù)。在時(shí)間序列數(shù)據(jù)應(yīng)用中實(shí)現(xiàn)嵌入式人工智能有多種方法。但首先…


什么是針對時(shí)間序列數(shù)據(jù)的人工智能? 


時(shí)間序列數(shù)據(jù)是指在均勻分布的時(shí)間間隔內(nèi)收集、記錄或測量的一系列數(shù)據(jù)點(diǎn)。通過時(shí)間序列數(shù)據(jù)點(diǎn),分析人員可以了解數(shù)據(jù)是如何隨時(shí)間演變或變化的。


時(shí)間序列數(shù)據(jù)分析涉及了解數(shù)據(jù)中的模式、趨勢、異常和行為。人工智能可用于對未來值進(jìn)行觀察或預(yù)測,從數(shù)據(jù)中提取真知灼見,為決策提供依據(jù)。這類分析可以使用人工智能網(wǎng)絡(luò)來完成,這就需要了解和選擇處理硬件。


在預(yù)測性維護(hù)、環(huán)境異常檢測、物聯(lián)網(wǎng)設(shè)備、多軸運(yùn)動等應(yīng)用中,時(shí)間序列數(shù)據(jù)可用于了解數(shù)據(jù)中的模式、趨勢和行為。利用卷積神經(jīng)網(wǎng)絡(luò)、遞歸神經(jīng)網(wǎng)絡(luò)、長短期記憶網(wǎng)絡(luò)和門控遞歸單元等人工智能算法,時(shí)間序列數(shù)據(jù)可用于檢測預(yù)期結(jié)果或異常結(jié)果。雖然這些機(jī)器學(xué)習(xí)算法可在通用硬件上執(zhí)行,但使用帶有人工智能內(nèi)核的處理器和/或傳感器可減少延遲并提高效率。


包括 Cortex-M 內(nèi)核、NPU、GPU 和嵌入式人工智能傳感器組件在內(nèi)的幾種常見處理器內(nèi)核技術(shù)可用于人工智能時(shí)間序列數(shù)據(jù)分析。這些新處理器技術(shù)與專用人工智能算法的融合正在推動嵌入式系統(tǒng)和邊緣計(jì)算領(lǐng)域的創(chuàng)新。從醫(yī)療保健、汽車、制造、農(nóng)業(yè)等領(lǐng)域的應(yīng)用來看,嵌入式人工智能處理器正在為更智能、更自主的設(shè)備鋪平道路,這些設(shè)備能夠以前所未有的速度、精度和效率分析真實(shí)世界的數(shù)據(jù)。

可識別時(shí)間序列數(shù)據(jù)趨勢的嵌入式人工智能系統(tǒng)

Nanoedge AI Studio 顯示來自電機(jī)控制應(yīng)用程序的時(shí)間序列數(shù)據(jù)


具有機(jī)器學(xué)習(xí)功能的微控制器


Cortex-M 系列微控制器 (MCU)(從 M0 到 M85)通常是各種應(yīng)用中嵌入式系統(tǒng)處理的支柱,無論是否執(zhí)行人工智能。不過,由于這些內(nèi)核專為低功耗、實(shí)時(shí)數(shù)據(jù)處理而設(shè)計(jì),因此非常適合嵌入式人工智能硬件解決方案。


例如,采用 32 位 Arm Cortex-M33 的 STMicroelectronics STM32L5 和 NXP MCX-A MCU 都適用于使用簡單人工智能網(wǎng)絡(luò)的嵌入式系統(tǒng)。雖然這些傳統(tǒng)的 Cortex-M 內(nèi)核在處理傳感器數(shù)據(jù)和簡單的人工智能處理方面表現(xiàn)出色,但對于更復(fù)雜的機(jī)器學(xué)習(xí)任務(wù),讓我們來看看集成了更多內(nèi)核以進(jìn)一步實(shí)現(xiàn)機(jī)器學(xué)習(xí)的微控制器。


圖形處理器 (GPU)


雖然 GPU 主要用于提高 2D(有時(shí)是 3D )圖形性能,但越來越多的嵌入式人工智能應(yīng)用將 GPU 與 Cortex-M MCU 結(jié)合使用。這些并行處理單元可用于深度學(xué)習(xí)算法,如卷積神經(jīng)網(wǎng)絡(luò) (CNN),以完成圖像識別和物體檢測等任務(wù)。例如,STM32U5 采用 Cortex-M33 和 NeoChrome GPU,適合工業(yè)、智慧城市、智能家居和物聯(lián)網(wǎng)應(yīng)用中的人機(jī)界面應(yīng)用或嵌入式人工智能解決方案。



神經(jīng)處理單元 (NPU)

神經(jīng)處理單元 (NPU) 是高度專業(yè)化的內(nèi)核,為加速神經(jīng)網(wǎng)絡(luò)計(jì)算而進(jìn)行了優(yōu)化,使程序能夠在功能上自我學(xué)習(xí)和重新編程。這些內(nèi)核通常與 Cortex-M 處理器一起實(shí)現(xiàn),能夠執(zhí)行比標(biāo)準(zhǔn) Cortex-M 內(nèi)核單獨(dú)運(yùn)行時(shí)更復(fù)雜的神經(jīng)網(wǎng)絡(luò)算法。


例如,NXP 的 MCX-N 結(jié)合了 Arm Cortex-M33 和定制的 eIQ 神經(jīng)處理單元。Alif Semiconductor 的 Ensemble 系列是可用于工業(yè)應(yīng)用的微控制器,將 Arm Cortex-M55 CPU 與 ARM Ethos-U55 神經(jīng)處理單元實(shí)現(xiàn)的專用邊緣人工智能加速相結(jié)合。該系列可提供單 Cortex-M55 或雙 Cortex-M55、單 Ethos-U55 或雙 Ethos-U55,以及可選的一個(gè)或兩個(gè) Cortex-A32 MPU 內(nèi)核。

通過將人工智能任務(wù)卸載到 NPU,嵌入式系統(tǒng)可以實(shí)現(xiàn)實(shí)時(shí)神經(jīng)網(wǎng)絡(luò)推理,同時(shí)節(jié)省功耗、體積和資源。


帶有嵌入式人工智能內(nèi)核的傳感器

如上所述,嵌入式人工智能應(yīng)用通常使用標(biāo)準(zhǔn) MCU 進(jìn)行數(shù)據(jù)處理的計(jì)算。然而,新的傳感器技術(shù)已將人工智能處理移至 MCU 外部,并將嵌入式人工智能處理內(nèi)核置于傳感器本身,稱為機(jī)器學(xué)習(xí)內(nèi)核 (MLC) 和智能傳感器處理單元 (ISPU)。


帶有嵌入式機(jī)器學(xué)習(xí)核心 (MLC) 的傳感器可以經(jīng)過訓(xùn)練,在檢測到特定事件時(shí)觸發(fā)操作,從而能夠精確檢測變化場景。這樣可以減少 MCU 的計(jì)算負(fù)荷,從而實(shí)現(xiàn)低功耗架構(gòu)并提高系統(tǒng)效率。例如,LSM6DSV16BXTR 是一款帶有 3 軸加速計(jì)和 3 軸陀螺儀的 IMU,它采用 MLC 來實(shí)現(xiàn)人工智能功能。


另外,傳感器還可以采用智能傳感器處理單元 (ISPU),這是一種專用于高處理能力的集成數(shù)字信號處理器,可在 ISPU 內(nèi)支持機(jī)器學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)處理。這種核心架構(gòu)可對內(nèi)部和外部傳感器進(jìn)行人工智能處理,而無需外部 MCU 來處理更繁重的計(jì)算。這可用于各種傳感器輸入的自動校準(zhǔn)、傳感器融合和異常檢測,而無需外部 MCU。相反,較小的 MCU 可用于通用微控制器負(fù)載。


結(jié)論


將人工智能應(yīng)用于時(shí)間序列數(shù)據(jù)是一個(gè)令人興奮的發(fā)展領(lǐng)域,有可能為工業(yè)、醫(yī)療保健和消費(fèi)應(yīng)用增加智能。開發(fā)人工智能解決方案需要考慮很多因素,選擇處理器只是其中之一。

(文章來源:Arrow Solution,作者:George Dickey)


免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。


推薦閱讀:

解決了!這個(gè)模塊解決了流式細(xì)胞儀設(shè)計(jì)的多個(gè)痛點(diǎn)!

提高垂直分辨率 改善測量精度

OBC設(shè)計(jì)不斷升級,揭秘如何適應(yīng)更高功率等級和電壓

利用無線蜂窩和Wi-Fi信號發(fā)電!備受期待的射頻能量收集,你了解多少?

如何解決汽車V2X與多無線技術(shù)頻譜管理的共存挑戰(zhàn)!

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
壓控振蕩器 壓力傳感器 壓力開關(guān) 壓敏電阻 揚(yáng)聲器 遙控開關(guān) 醫(yī)療電子 醫(yī)用成像 移動電源 音頻IC 音頻SoC 音頻變壓器 引線電感 語音控制 元件符號 元器件選型 云電視 云計(jì)算 云母電容 真空三極管 振蕩器 振蕩線圈 振動器 振動設(shè)備 震動馬達(dá) 整流變壓器 整流二極管 整流濾波 直流電機(jī) 智能抄表
?

關(guān)閉

?

關(guān)閉