国产良妇出轨视频在线_国产高清无码视频在线观看_国产精品亚洲精品久久精品_国产男女猛视频在线观看网站

你的位置:首頁 > 電源管理 > 正文

正確理解驅(qū)動電流與驅(qū)動速度

發(fā)布時間:2022-05-07 來源:芯師爺 責(zé)任編輯:wenwei

【導(dǎo)讀】本文主要闡述了在驅(qū)動芯片中表征驅(qū)動能力的關(guān)鍵參數(shù):驅(qū)動電流和驅(qū)動時間的關(guān)系,并通過實(shí)驗(yàn)解釋了如何正確理解這些參數(shù)在實(shí)際應(yīng)用中的表現(xiàn)。


概述 

驅(qū)動芯片


功率器件如MOSFET、IGBT需要驅(qū)動電路的配合從而得以正常地工作。圖1顯示了一個驅(qū)動芯片驅(qū)動一個功率MOSFET的電路。當(dāng)M1開通,M2關(guān)掉的時候,電源VCC通過M1和Rg給Cgs,Cgd充電,從而使MOSFET開通,其充電簡化電路見圖2。當(dāng)M1關(guān)斷,M2開通的時候,Cgs通過Rg和M2放電,從而使MOSFET關(guān)斷,其放電簡化電路見圖3。


1650803050828851.png

圖 1. 功率器件驅(qū)動電路


1650803038593516.png

圖 2. 開通時的簡化電路及充電電流


1650803027218564.png

圖 3. 關(guān)斷時的簡化電路及放電電流


驅(qū)動電路的驅(qū)動能力影響功率器件的開關(guān)速度,進(jìn)而影響整個系統(tǒng)的效率、電磁干擾等性能。驅(qū)動能力太強(qiáng)會導(dǎo)致器件應(yīng)力過高、電磁干擾嚴(yán)重等問題; 而驅(qū)動能力太弱會導(dǎo)致系統(tǒng)效率降低。因此,選擇一個適當(dāng)驅(qū)動能力的芯片來驅(qū)動功率器件就顯得至關(guān)重要。


衡量驅(qū)動能力的主要指標(biāo)


驅(qū)動電流和驅(qū)動速度


衡量一個驅(qū)動芯片驅(qū)動能力的指標(biāo)主要有兩項(xiàng):驅(qū)動電流和驅(qū)動的上升、下降時間。這兩項(xiàng)參數(shù)在一般驅(qū)動芯片規(guī)格書中都有標(biāo)注。而在實(shí)際應(yīng)用中,工程師往往只關(guān)注驅(qū)動電流而忽視上升、下降時間這一參數(shù)。事實(shí)上,驅(qū)動的上升、下降時間這個指標(biāo)也同樣重要,有時甚至比驅(qū)動電流這個指標(biāo)還重要。因?yàn)轵?qū)動的上升、下降時間直接影響了功率器件的開通、關(guān)斷速度。


1650803010574673.png

圖 4. MOSFET開通時驅(qū)動電壓和驅(qū)動電流


圖4顯示了一個MOSFET開通時門極驅(qū)動電壓和驅(qū)動電流的簡化時序圖。t1到t2這段時間是門極驅(qū)動的源電流(IO+)從零開始到峰值電流的建立時間。在t3時刻,門極電壓達(dá)到米勒平臺,源電流開始給MOSFET的米勒電容充電。在t4時刻,米勒電容充電完成,源電流繼續(xù)給MOSFET的輸入電容充電,門極電壓上升直到達(dá)到門極驅(qū)動的電源電壓VCC。同時在t4到t5這個期間,源電流也從峰值電流降到零。


這里有一個很重要的階段:t1到t2的源電流的建立時間。不同的驅(qū)動芯片有不同的電流建立時間,這一建立時間會影響驅(qū)動的速度。


測試對比


以下通過實(shí)測兩款芯片SLM2184S和IR2184S的性能來說明驅(qū)動電流建立時間對驅(qū)動速度的影響。


表格1對比了SLM2184S和IR2184S的各項(xiàng)測試。雖然SLM2184S的峰值源電流[IO+]和峰值灌電流[IO-]比IR2184S的測試值偏小,但是SLM2184S的電流建立時間遠(yuǎn)比IR2184S的建立時間更短。


表格1:SLM2184S 和IR2184S驅(qū)動電流和驅(qū)動時間對比

18.png


因此,在負(fù)載電容(比如MOSFET的輸入電容)較小的時候,SLM2184S的驅(qū)動速度并不比IR2184S的驅(qū)動速度慢。如在1nF的負(fù)載電容下,兩者的驅(qū)動速度基本一致。只有當(dāng)負(fù)載電容較大的時候,如在3.3nF的情況下,SLM2184S的驅(qū)動速度才會比IR2184S慢。


實(shí)測


SLM2184S vs IR2184S 驅(qū)動測試對比


? 圖5~圖16: 實(shí)測SLM2184S的驅(qū)動電流和驅(qū)動時間的波形。

? 圖17~圖28: 實(shí)測IR2184S的驅(qū)動電流和驅(qū)動時間的波形。


SLM2184S驅(qū)動測試


19.png

CH1: 驅(qū)動輸入; CH2: 驅(qū)動輸出; CH4: 驅(qū)動源電流

圖5:SLM2184S的驅(qū)動源電流

負(fù)載電容100nF


20.png

CH1: 驅(qū)動輸入; CH2: 驅(qū)動輸出; CH4: 驅(qū)動源電流

圖6:SLM2184S的驅(qū)動源電流上升速度

負(fù)載電容100nF


21.png

CH1: 驅(qū)動輸入; CH2: 驅(qū)動輸出; CH4: 驅(qū)動灌電流

圖7:SLM2184S的驅(qū)動灌電流

負(fù)載電容100nF


22.png

CH1: 驅(qū)動輸入; CH2: 驅(qū)動輸出; CH4: 驅(qū)動灌電流

圖8:SLM2184S的驅(qū)動灌電流上升速度

負(fù)載電容100nF


23.png

CH1: 驅(qū)動輸入; CH2: 驅(qū)動輸出; CH4: 驅(qū)動源電流

圖9:SLM2184S的驅(qū)動上升速度

負(fù)載電容1nF


24.png

CH2: 驅(qū)動輸出

圖10:SLM2184S的驅(qū)動上升速度

負(fù)載電容1nF


25.png

CH1: 驅(qū)動輸入; CH2: 驅(qū)動輸出; CH4: 驅(qū)動灌電流

圖11:SLM2184S的驅(qū)動下降速度

負(fù)載電容1nF


26.pngCH2: 驅(qū)動輸出

圖12:SLM2184S的驅(qū)動下降速度

負(fù)載電容1nF


27.png

CH2: 驅(qū)動輸出

圖13:SLM2184S的驅(qū)動上升速度

負(fù)載電容2.2nF


28.png

CH2: 驅(qū)動輸出

圖14:SLM2184S的驅(qū)動上升速度

負(fù)載電容3.3nF


29.png

CH2: 驅(qū)動輸出

圖15:SLM2184S的驅(qū)動下降速度

負(fù)載電容2.2nF


30.png

CH2: 驅(qū)動輸出

圖16:SLM2184S的驅(qū)動下降速度

負(fù)載電容3.3nF


IR2184S驅(qū)動測試


1650802881518049.png

CH1: 驅(qū)動輸入; CH2: 驅(qū)動輸出; CH4: 驅(qū)動源電流

圖17:IR2184S的驅(qū)動源電流

負(fù)載電容100nF


1650802865221217.png

CH1: 驅(qū)動輸人; CH2: 驅(qū)動輸出; CH4: 驅(qū)動源電流

圖18:IR2184S的驅(qū)動源電流上升速度

負(fù)載電容100nF


1650802853238446.png

CH1: 驅(qū)動輸入; CH2: 驅(qū)動輸出; CH4: 驅(qū)動灌電流

圖19:IR2184S的驅(qū)動灌電流

負(fù)載電容100nF


1650802829357464.png

CH1: 驅(qū)動輸入; CH2: 驅(qū)動輸出; CH4: 驅(qū)動灌電流

圖20:IR2184S的驅(qū)動灌電流上升速度

負(fù)載電容100nF


1650802817417642.png

CH1: 驅(qū)動輸入; CH2: 驅(qū)動輸出; CH4: 驅(qū)動源電流

圖21:IR2184S的驅(qū)動上升速度

負(fù)載電容1nF


1650802804728635.png

CH2: 驅(qū)動輸出

圖22:IR2184S的驅(qū)動上升速度

負(fù)載電容1nF


1650802785680742.png

CH1: 驅(qū)動輸入; CH2: 驅(qū)動輸出; CH4: 驅(qū)動灌電流

圖23:IR2184S的驅(qū)動下降速度

負(fù)載電容1nF


1650802774840010.png

CH2: 驅(qū)動輸出

圖24:IR2184S的驅(qū)動下降速度

負(fù)載電容1nF


1650802761335618.png

CH2: 驅(qū)動輸出

圖25:IR2184S的驅(qū)動上升速度

負(fù)載電容2.2nF


1650802743647821.png

CH2: 驅(qū)動輸出

圖26:IR2184S的驅(qū)動上升速度

負(fù)載電容3.3nF


1650802730163855.png

CH2: 驅(qū)動輸出

圖27:IR2184S的驅(qū)動下降速度

負(fù)載電容2.2nF


1650802717156204.png

CH2: 驅(qū)動輸出

圖28:IR2184S的驅(qū)動下降速度

負(fù)載電容3.3nF


測試總結(jié)


從以上實(shí)驗(yàn)測試可以看到,驅(qū)動芯片的驅(qū)動速度不僅取決于驅(qū)動電流的大小,還受到諸如驅(qū)動電流建立時間、MOSFET的輸入電容等因素的影響。有些驅(qū)動芯片的驅(qū)動電流雖然比較大,但由于它的電流上升和下降速度很慢,并沒有很好地發(fā)揮大驅(qū)動電流的作用,甚至在大部分應(yīng)用場合下驅(qū)動速度(tr和tf)不如驅(qū)動電流小的驅(qū)動芯片。因此,在選擇驅(qū)動芯片的時候,不僅要關(guān)注驅(qū)動電流的大小,也要關(guān)注在一定負(fù)載電容下的上升、下降時間。當(dāng)然最為妥當(dāng)?shù)霓k法是根據(jù)實(shí)際選擇的功率管測量驅(qū)動端的波形,從而判斷是否選擇了合適的驅(qū)動芯片。



免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。


推薦閱讀:


小體積大電流,高紋波抑制比LDO助力高密度電路設(shè)計(jì)

“毅力”號火星探測器和極端環(huán)境下的抗輻射技術(shù)

提高電路板EMC能力PCB設(shè)計(jì)和布線方法

高精度TMR磁傳感器在創(chuàng)造機(jī)器人自然動作中所發(fā)揮的作用

如何利用揚(yáng)聲器構(gòu)建深度神經(jīng)網(wǎng)絡(luò)?

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
壓控振蕩器 壓力傳感器 壓力開關(guān) 壓敏電阻 揚(yáng)聲器 遙控開關(guān) 醫(yī)療電子 醫(yī)用成像 移動電源 音頻IC 音頻SoC 音頻變壓器 引線電感 語音控制 元件符號 元器件選型 云電視 云計(jì)算 云母電容 真空三極管 振蕩器 振蕩線圈 振動器 振動設(shè)備 震動馬達(dá) 整流變壓器 整流二極管 整流濾波 直流電機(jī) 智能抄表
?

關(guān)閉

?

關(guān)閉