国产良妇出轨视频在线_国产高清无码视频在线观看_国产精品亚洲精品久久精品_国产男女猛视频在线观看网站

你的位置:首頁 > 電源管理 > 正文

OBC PFC車規(guī)功率器件結(jié)溫波動與功率循環(huán)壽命分析

發(fā)布時間:2023-11-26 來源:英飛凌 責(zé)任編輯:wenwei

【導(dǎo)讀】隨著新能源汽車(xEV)在乘用車滲透率的逐步提升,車載充電機(jī)(OBC)作為電網(wǎng)與車載電池之間的單向充電或雙向補(bǔ)能的車載電源設(shè)備,也得到了非常廣泛的應(yīng)用。相比車載主驅(qū)電控逆變器, 電源類OBC產(chǎn)品復(fù)雜度高,如何實現(xiàn)其高功率密度、高可靠性、高效率、高性價比等核心指標(biāo)的優(yōu)化與平衡,一直是OBC不斷技術(shù)迭代與產(chǎn)品革新的方向。


在上述OBC與可靠性的背景下,針對車規(guī)功率器件在PFC電路中的結(jié)溫(Tvj)波動與功率循環(huán)(PC)壽命的熱點應(yīng)用話題,我們將以系列微信文章的形式,結(jié)合英飛凌最新的技術(shù)與產(chǎn)品,與大家一起分享。


功率器件可靠性基礎(chǔ)


功率器件的結(jié)溫(Tvj)波動與功率循環(huán)(PC)壽命,一直是工業(yè)界與學(xué)術(shù)界討論的重點。在軌道牽引、風(fēng)力發(fā)電(發(fā)電側(cè)低頻)、電梯變頻、和電動汽車主驅(qū)等應(yīng)用中,相關(guān)的研究已持續(xù)了幾十年,相關(guān)的標(biāo)準(zhǔn)與測試方法也趨于成熟。


功率循環(huán)(PC)壽命的本質(zhì),其實是功率器件內(nèi)的不同封裝材料,在溫度變化時,由于自身CTE不匹配而產(chǎn)生的彼此機(jī)械應(yīng)力與疲勞損傷,進(jìn)而產(chǎn)生材料間的分離和功率器件電氣失效等現(xiàn)象,如綁定線與DCB分離、綁定線與芯片上表面分開、芯片與DCB焊料分層、DCB與銅基板之間焊料退化等等,如圖1。


4.png

圖1:功率模塊功率循環(huán)PC壽命對應(yīng)的可能失效位置示意圖


因此,功率器件自身的功率循環(huán)(PC)能力,和實際加載的溫度變化大小,共同決定了器件在應(yīng)用中功率循環(huán)(PC)壽命的多少。


不同的芯片和封裝材料及其工藝,對功率器件的功率循環(huán)(PC)能力有著非常顯著的影響。為了表征,功率器件的功率循環(huán)(PC)能力,器件廠家一般會提供相應(yīng)產(chǎn)品的PC曲線或擬合公式,便于計算不同工況下的器件PC壽命。


因此,英飛凌有一篇專門的應(yīng)用筆記,介紹了如何利用PC曲線進(jìn)行PC壽命(次數(shù))計算的基本思路,如圖2。


5.png

圖2:英飛凌關(guān)于PC和TC的AN


以上述應(yīng)用筆記中IGBT模塊的PC曲線及其PC壽命計算為例,如圖3所示,典型IGBT功率模塊的PC曲線,及其Ton時間的折算曲線,通過實際應(yīng)用中IGBT的結(jié)溫Tvj波動(Tvjmax和ΔTvj),再根據(jù)Tvj波動周期進(jìn)行Ton時間的折算,就可以得到單點工況的PC次數(shù)。復(fù)雜工況可以通過加權(quán)平均或者雨流法等復(fù)雜算法,算出總的PC次數(shù)及其對應(yīng)的時間,即所謂的PC壽命。計算的思路比較簡單,如果沒有PC曲線,有對應(yīng)的PC擬合公式,同樣可以進(jìn)行上述PC壽命計算。


7.png

圖3:典型IGBT模塊的PC曲線和Ton折算曲線


此處,需要特別說明兩點:一是,不同的PC測試方法,會得到不同的PC測試結(jié)果曲線,而不同器件廠家的PC測試方法可能是不同的(英飛凌的測試方法是業(yè)內(nèi)最嚴(yán)酷的,如圖4)。因此,以車規(guī)模塊的AQG324可靠性標(biāo)準(zhǔn)為例,詳細(xì)規(guī)定了PC的測試方法(統(tǒng)一測試條件),以公平地對比不同器件的PC能力表現(xiàn)。二是,同樣的器件,失效概率(Failure  Probability)不同,則PC曲線也不同。英飛凌一般按默認(rèn)5%(業(yè)內(nèi)標(biāo)桿),而有些器件廠家可能是10%。


7.png

圖4:不同的PC測試方法對PC測試結(jié)果的影響


以上,我們介紹了功率器件(IGBT模塊)可靠性的基礎(chǔ)。針對OBC應(yīng)用中的單管(Si或SiC)器件,上述思路同樣適應(yīng),只是相應(yīng)的器件PC曲線稍有差異,再增加一些針對單管特性的額外參數(shù)折算等而已,相關(guān)細(xì)節(jié),我們會在下一篇的具體案例中分析與討論。


OBC應(yīng)用與PFC拓?fù)?/p>


車載OBC產(chǎn)品復(fù)雜度高,在OBC產(chǎn)品設(shè)計應(yīng)用中,要實現(xiàn)其高功率密度、高可靠性、高效率、高性價比等核心指標(biāo)的優(yōu)化與平衡。為了滿足電網(wǎng)AC側(cè)輸入功率因素和諧波的要求,和DCDC的寬電壓/負(fù)載范圍,通常OBC采用一級獨立的功率因素矯正(PFC)電路,典型的車載OBC系統(tǒng)架構(gòu)如圖5所示。PFC級通過矯正輸入AC電流,保持和輸入電壓同相位的交流正弦波,在實現(xiàn)高功率因素的同時,功率器件流過同頻率的脈動電流,功率損耗呈現(xiàn)脈動形式,帶來比較大的結(jié)溫Tvj波動(ΔTvj)。如上節(jié)所述,功率器件的結(jié)溫(Tvj)波動與功率循環(huán)(PC)壽命密切相關(guān),設(shè)計車載OBC產(chǎn)品,評估功率器件PC壽命,不可避免需要分析功率器件的結(jié)溫波動帶來的影響,這對車載OBC的長期可靠性評估尤為重要,這個話題也得到了業(yè)界越來越多的關(guān)注和重視。


8.png

圖5:OBC產(chǎn)品結(jié)構(gòu)示意圖


目前主流的OBC拓?fù)洌话惴譃榉歉綦xAC/DC的PFC(如單/雙向圖騰柱PFC,或兩電平B6等)和隔離DC/DC的諧振電路(如LLC, CLLC, DAB等)兩部分。按PFC接入電網(wǎng)的制式(單相或三相或多相兼容)、電池能量單向或雙向、電池電壓400V或800V,結(jié)合系統(tǒng)性能與成本指標(biāo)等要求,具體的拓?fù)浞桨讣捌骷x型都會有所不同。


以單相功率6.6kW的OBC 為例,下圖是PFC的幾種常見拓?fù)浣M合,如圖6所示。


在單相圖騰柱PFC的快管位置:既有兩路IGBT單管交錯,也有單路SiC MOSFET單管,或是單路混合型SiC單管(Si/IGBT+SiC/SBD)等,基于不同的功率器件特性,常見的開關(guān)頻率fsw從40kHz ~ 100kHz不等。


在單相圖騰柱PFC的慢管位置:有單向充電的二極管,也有V2X雙向需求的IGBT單管或者Si MOSFET單管方案。

 

9.png

圖6:單相6.6kW OBC PFC常見拓?fù)浣M合


如圖7,在單/三相電網(wǎng)兼容的11kW OBC PFC中,基本以1200V SiC MOEFET單管的方案為主,在三相電網(wǎng)充放電時,以三相全橋B6拓?fù)溥\行,在單相電網(wǎng)充放電或者V2L時,可選其中一組橋臂作為慢管工作,其他橋臂交錯或并聯(lián)作為快管工作。


10.png

圖7:單/三相兼容的11kW OBC PFC(3線/4線)常見拓?fù)?/p>


因此,在OBC應(yīng)用中的PFC拓?fù)?,主流就是單相圖騰柱PFC和三相全橋B6這兩種。


車規(guī)功率器件在單相圖騰柱拓?fù)渲械膿p耗分析與Tvj波動


如圖8,基于PLECS軟件,我們搭建了簡單的單相圖騰柱電路,結(jié)合英飛凌官網(wǎng)的車規(guī)器件PLECS模型,進(jìn)行了器件損耗與Tvj波動的仿真。


以單相6.6kW充電工況為例,仿真Setup如下:


快管位置(T1/T2/D1/D2):Si/IGBT/F5/650V/50A + SiC/SBD/650V/30A


慢管位置(Q3/Q4):Si/CoolMOS/650V/50mOhm


開關(guān)頻率fsw:60kHz


電網(wǎng)電壓和電流:220Vac/32Arms


母線電壓:420Vdc


11.png

圖8:單相6.6kW圖騰柱PFC示意圖


12.png

圖9:電網(wǎng)電壓(V)和電流(A)及其驅(qū)動信號(T1/T2為快管、Q3/Q4為慢管)


13.png

圖10:快管(T1/D1)和慢管(Q3)損耗(W)波形與電網(wǎng)電流(A)的波形


如圖9和圖10所示,快管T1/D1屬于高頻硬開關(guān),慢管Q3只是工頻導(dǎo)通。所以,快管的器件功率損耗包含開關(guān)損耗和導(dǎo)通損耗,而慢管的器件功率損耗只有導(dǎo)通損耗。再加上器件自身的瞬態(tài)熱阻Zthjc,以及器件外圍的熱阻與水溫等,就可以得到功率器件的結(jié)溫Tvj波動,如圖11所示:


14.png

圖11:快管(T1/D1)和慢管(Q3)的結(jié)溫Tvj(?C)波動和輸入電流Iin_ac(A)


由圖11,無論快管還是慢管,都存在50Hz的結(jié)溫Tvj波動。結(jié)合前面的仿真分析可知,快管位置T1/D1的損耗及結(jié)溫Tvj波動的影響因素,和慢管位置Q3的情況是不同的,如圖12所示:


●   快管T1(以IGBT為例)的結(jié)溫Tvj波動,相關(guān)的影響因素較多,包括PFC系統(tǒng)參數(shù)、器件自身特性(開關(guān)特性、導(dǎo)通特性、熱阻特性)、及其換流FWD特性等,即相同器件下的可調(diào)節(jié)的自由度或可優(yōu)化的空間較大。


●   慢管Q3(以CoolMOS為例)的結(jié)溫Tvj波動,幾乎只與Rdson和熱阻Zthjc相關(guān)。


●   快管D1如果采用SiC/SBD,考慮到Erec很小,則情況與慢管Q3非常類似,也幾乎只與SiC/SBD電流規(guī)格和熱阻Zthjc相關(guān)。


15.png

圖12:快管(T1/D1)和慢管(Q3)的結(jié)溫Tvj波動的影響因素


總結(jié)


綜上所述,文章簡要回顧了功率器件的PC壽命可靠性、分析了OBC中PFC主流拓?fù)?、和仿真了圖騰柱PFC的損耗和結(jié)溫Tvj波動。那么,在實際OBC應(yīng)用中,如果結(jié)合英飛凌的車規(guī)產(chǎn)品,進(jìn)行結(jié)溫Tvj波動的計算與PC壽命評估及其注意事項等,我們將在后續(xù)篇章中逐步深入與展開。


作者:張浩、李劭陽、李紀(jì)明、徐宇晅



免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。


推薦閱讀:


瑞薩無線遠(yuǎn)程信息處理單元,推動汽車網(wǎng)聯(lián)化發(fā)展

電池化學(xué)成分如何影響電池充電IC的選擇

eFuse在汽車域控制器架構(gòu)中如何提供更智能的保護(hù)?

阿里云創(chuàng)始人王堅:云計算和GPT的關(guān)系,就是電和電機(jī)的關(guān)系

通過動態(tài)電壓調(diào)整實現(xiàn)精密電壓調(diào)節(jié)

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
壓控振蕩器 壓力傳感器 壓力開關(guān) 壓敏電阻 揚聲器 遙控開關(guān) 醫(yī)療電子 醫(yī)用成像 移動電源 音頻IC 音頻SoC 音頻變壓器 引線電感 語音控制 元件符號 元器件選型 云電視 云計算 云母電容 真空三極管 振蕩器 振蕩線圈 振動器 振動設(shè)備 震動馬達(dá) 整流變壓器 整流二極管 整流濾波 直流電機(jī) 智能抄表
?

關(guān)閉

?

關(guān)閉