国产良妇出轨视频在线_国产高清无码视频在线观看_国产精品亚洲精品久久精品_国产男女猛视频在线观看网站

你的位置:首頁 > 電源管理 > 正文

PI技術(shù)經(jīng)理Jason Yan:1250V氮化鎵開關(guān)IC是一個重要的里程碑

發(fā)布時間:2023-11-04 責(zé)任編輯:wenwei

【導(dǎo)讀】Power Integrations推出具有里程碑意義的1250V氮化鎵開關(guān)IC前不久,集邦咨詢發(fā)布2022年氮化鎵(GaN)主要廠商出貨量排名,數(shù)據(jù)顯示Power Integrations(PI)以20%的市占率在2022年全球GaN功率半導(dǎo)體市場排名第一。這與PI的GaN發(fā)展策略和產(chǎn)品布局不無關(guān)系。


日前,PI發(fā)布全球首顆額定耐壓最高的單管GaN電源IC。關(guān)于這款產(chǎn)品以及產(chǎn)品背后的技術(shù)背景,PI技術(shù)培訓(xùn)經(jīng)理Jason Yan與記者進(jìn)行了深入交流。他表示,這顆IC采用了1250V的PowiGaN? 開關(guān)技術(shù),強(qiáng)化了公司在高壓GaN技術(shù)領(lǐng)域的持續(xù)領(lǐng)先地位,具有里程碑意義。


1250V PowiGaN? 填補(bǔ)了空白


基于InnoSwitch? 3-EP的PowiGaN? 開關(guān)是PI恒壓/恒流準(zhǔn)諧振離線反激式開關(guān)IC產(chǎn)品系列。它采用同步整流和FluxLink? 磁感耦合技術(shù)替代傳統(tǒng)光耦,并具有豐富的開關(guān)選項,高度集成的開關(guān)IC集成了功率開關(guān)、保護(hù)、反饋和同步整流,可以穩(wěn)定輸出電壓和電流,提升整體電源效率。


1.jpg

PI 技術(shù)培訓(xùn)經(jīng)理Jason Yan講解1250V PowiGaN?


在此之前,PI產(chǎn)品包括725V硅開關(guān)、1700V碳化硅(SiC)開關(guān)及其他衍生的750V、900V產(chǎn)品,現(xiàn)在又增加了1250V耐壓的最新成員。PI也因此成為唯獨一家全面覆蓋MOS管到不同耐壓的GaN和SiC的公司。


Jason Yan介紹說,PowiGaN? 目前已在60多個市場應(yīng)用中廣泛使用,包括家電、電動自行車、音響、汽車等。其InnoSwitch? 3系列初級開關(guān)涵蓋硅、GaN和SiC,硅開關(guān)包括650V、750V和900V;SiC開關(guān)是1700V;繼今年3月發(fā)布了900V的GaN器件之后,PI最新發(fā)布的也是一款耐壓達(dá)1250V的GaN器件。


據(jù)他介紹,PowiGaN? 具有高達(dá)93%的功率變換效率,在高達(dá)85W輸出功率條件下無需金屬散熱片,簡化了散熱設(shè)計;可在待機(jī)模式下為負(fù)載提供更大的功率,有利于實現(xiàn)高度緊湊的反激式電源設(shè)計,減小系統(tǒng)尺寸和重量;具有更大裕量及更強(qiáng)的耐用性,適用于更高的供電電壓,包括工業(yè)類電壓、美規(guī)277VAC三相電供電的室外照明應(yīng)用,以及某些電網(wǎng)不穩(wěn)定環(huán)境的應(yīng)用。


2.png

適用于工業(yè)及家電類應(yīng)用的PowiGaN?


具體講,在典型反激式應(yīng)用中,725V產(chǎn)品可滿足450VDC母線電壓需求,900V可以在550V母線電壓下工作,1700V可以在1200V母線電壓下工作。所以,針對不同用電環(huán)境,客戶可以選擇不同的功率開關(guān),最新的1250V GaN可以在750VDC母線電壓工作,填補(bǔ)了這一檔的空白,而且?guī)缀跻押w450V-1250V的整個母線電壓范圍,解決了使用1700V產(chǎn)品大馬拉小車的問題。如果將來進(jìn)一步提升GaN的耐壓,就可以用GaN實現(xiàn)1700V SiC開關(guān)的替代。隨著未來汽車級認(rèn)證產(chǎn)品的推出,勢必會使GaN產(chǎn)品得到更廣泛的應(yīng)用。


3.png

涵蓋Si、GaN或SiC的InnoSwitch3系列初級開關(guān)


1250V GaN有更大的電壓裕量。對于480VAC輸入的應(yīng)用,在主功率開關(guān)管關(guān)斷后,通常反激式應(yīng)用的開關(guān)管兩端會呈現(xiàn)830V的最高電壓,這其中的成分主要包括輸入電壓、反射電壓加上漏感尖峰電壓,而這距1250V的開關(guān)管額定電壓有極大的裕量。對于以MOS管作為主功率開關(guān)管的設(shè)計,當(dāng)其兩端電壓一旦超過上面的安全雷擊電壓區(qū)域就會炸掉,而GaN開關(guān)器件的優(yōu)勢在于,在瞬間大電壓下它并不會永久損壞,唯一變化的僅是其導(dǎo)通電阻的漂移,不會造成器件的絕緣破壞,產(chǎn)生不可逆的永久損傷。在輸入電壓為480VAC、輸出為60W的滿載應(yīng)用條件下,此時母線電壓可達(dá)680VDC,而對于GaN開關(guān)來講還有420V以上的裕量,降額為66%,這樣可以在輸入電壓不穩(wěn)定情況下提供很好的保護(hù),大幅提升電源的可靠性。


4.png

1250V PowiGaN? 的電壓裕量


由于1250V的絕對最大值可以滿足80%的行業(yè)降額標(biāo)準(zhǔn),在使用新款這款1250V IC時,設(shè)計人員可以放心地設(shè)計可以在1000V峰值電壓工作的電源,利用巨大的裕量抵御電網(wǎng)波動、浪涌及其他電力擾動,滿足具有挑戰(zhàn)性電網(wǎng)環(huán)境的應(yīng)用要求。


PI GaN有何不同?


要回答這個問題,還要先來看看PI GaN采用的一種叫共源共柵(Cascode)的架構(gòu),它是將上下兩個管子串聯(lián),在上面的GaN下串聯(lián)一個低壓MOS管。據(jù)說,目前市場上只有兩家廠商采用這種架構(gòu),而批量供貨的只有PI。

封裝方面,PI利用多芯片模塊技術(shù)將所有的晶圓封裝在一個封裝當(dāng)中,然后內(nèi)部通過鍵合線進(jìn)行互連,通過精確控制驅(qū)動器尺寸和走線電感優(yōu)化了開關(guān)性能,并在內(nèi)部加強(qiáng)了對GaN開關(guān)器件的保護(hù),從而保證產(chǎn)品的高可靠性。


5.png

共源共柵架構(gòu)優(yōu)化了GaN的性能和可靠性


目前市場上的GaN有E-Mode(增強(qiáng)型)或D-Mode兩種,PI用的是后者。E-mode為常閉型器件,這是GaN的天然狀態(tài),如果不加信號,GaN始終處于導(dǎo)通狀態(tài)。要使GaN變成常開,就要加p摻雜偏置層,有可能增加風(fēng)險。PI的GaN器件是通過串聯(lián)一個低壓MOS管來實現(xiàn)了功率器件的常開狀態(tài)。


6.png

共源共柵消除了柵極驅(qū)動的挑戰(zhàn)


Jason Yan指出:“MOS管是非常成熟的技術(shù),無論是保護(hù)還是驅(qū)動;而且柵極不需要E-mode的負(fù)壓驅(qū)動,簡化了驅(qū)動電路,同時可防止發(fā)生誤開通現(xiàn)象。而E-mode要滿足更高的驅(qū)動電壓裕量以保證可靠性,就需要降低驅(qū)動電壓。這樣會導(dǎo)致器件本身的導(dǎo)通電阻變大,這樣就犧牲了GaN器件低導(dǎo)通電阻的優(yōu)勢。”


利用Cascode,PI最大限度提高了PowiGaN? 的性能,解決了柵極驅(qū)動的挑戰(zhàn),特別是在器件的堅固耐用方面。


7.png

共源共柵最大限度提升了變換器效率


以725V、650V工作的硅MOS為例,超過725V開關(guān)就會進(jìn)入雪崩區(qū)域而損壞;如果電壓再高,即使是E-mode GaN,也可能會在1100V的單次高壓事件中永久失效。


同樣,750V GaN可以在650V以下安全工作,但由于有安全雷擊電壓范圍,到750V性能才會下降,還仍能保證安全工作;只是出現(xiàn)導(dǎo)通電阻的漂移,而一旦電壓回到正常狀態(tài),它也會自行恢復(fù),不會造成永久擊穿。對于750V的 PowiGaN? 開關(guān)只有電壓超過1400V才會出現(xiàn)造成永久失效;1250V PowiGaN? 可承受的最高電壓甚至可達(dá)2100V。所以,GaN不但帶來了效益提升,降低了開關(guān)損耗,同時也大大增加了電源在高壓沖擊下的可靠性。


8.png

硅與PowiGaN? 耐用性對比


PowiGaN?、硅和SiC性能比較


以導(dǎo)通電阻(Rds(on))為0.44Ω的1250V器件為例,PI對自己的硅、SiC開關(guān)與PowiGaN? 開關(guān)的性能進(jìn)行了橫向比較。利用兩塊電路板——低壓輸入板和汽車中使用的高壓輸入板,對三種不同技術(shù)的效率表現(xiàn)做了對比。方法是只更換不同耐壓的InnoSwitch? 3-EP器件,每種器件都選擇其最適宜的輸出功率,觀察器件在板上的效率表現(xiàn),看GaN對整個電源性能產(chǎn)生了哪些影響。


9.png

硅、SiC與PowiGaN? 開關(guān)性能比較


可以看到,隨著輸入電壓提高,硅開關(guān)在650V、725V和900V不同輸入電壓的效率出現(xiàn)逐漸下降。


10.png

硅開關(guān)的效率隨輸入電壓增加而下降


電源最關(guān)鍵的參數(shù)是低壓條件下的溫升表現(xiàn),輸入電壓越高,溫升就越好,所以溫升測試都是在90VAC條件下進(jìn)行。相比650V硅開關(guān)方案,1250V GaN的低壓區(qū)域效率高出了1%,這意味著損耗降低了20%,溫度也可以降低20%。而當(dāng)1250V GaN在750V母線電壓下工作時,其效率和SiC的曲線很接近。


11.png

效率提升意味著降低工作溫度


Jason Yan解釋道,MOS管的開關(guān)損耗是由輸出電容(Coss)的儲能產(chǎn)生的,MOS管開通后,Coss儲存的能量會釋放掉,導(dǎo)致開關(guān)損耗。輸入電壓越高,開關(guān)電壓越高,損耗也越高。對于某個應(yīng)用來講,輸入電壓范圍是無法改變的,只能通過減小Coss來降低開關(guān)損耗。對于750V工作的硅器件,必須將MOS管的耐壓做高,這會使Rds(on)急劇增加,導(dǎo)通損耗也會相應(yīng)增加。為了降低Rds(on),就必須將晶圓尺寸做大,這樣又增加了Coss,所以這是一個矛盾關(guān)系,需要在導(dǎo)通損耗和開關(guān)損耗之間尋求平衡。采用GaN技術(shù)可以降低Coss,Rds(on)也會隨之減小,最大的好處是可以在更高母線電壓下使PowiGaN? 的開關(guān)損耗降至同等硅開關(guān)的1/3以下。更小的晶圓尺寸及更高的效率有利于使用更小的封裝。1200V硅TO-247封裝的Rds(on)為0.69Ω,而采用InSOP-24D封裝的1250V GaN的Rds(on)是0.44Ω。


12.png

在高壓反激類應(yīng)用中PowiGaN? 開關(guān)優(yōu)于MOSFET


比較表明,相對同等耐壓的硅,1250V PowiGaN? 具有性能上的優(yōu)勢,損耗約降低了一半,效率也有很大的改善。


13.png

1250V PowiGaN? 的損耗約降低了一半


作為第三代半導(dǎo)體器件的SiC同樣具有更高的效率,能夠?qū)崿F(xiàn)10℃以上的溫升改善。PI既有650V、725V的硅器件,也有1250V的PowiGaN?,可以將溫度做到76℃,比硅器件改善了6-10℃。


14.png

寬禁帶器件的效率和溫升改善


為了支持新產(chǎn)品的推廣應(yīng)用,PI提供一系列的支持,其中12V、6A反激變換器的參考設(shè)計DER-1025輸出功率為60W,輸入電壓為90–480VAC,輸出為12V、5A,空載功耗小于30mW,降額在66%以上,整個電壓范圍效率在92%左右。


GaN是功率變換的未來


Jason Yan表示,GaN技術(shù)代表著功率變換的未來。首先它極具成本效益,MOS管效率不高,而SiC成本很高。第二,GaN可以針對功率變換量身定制,不同環(huán)境應(yīng)用選擇不同功能的開關(guān)。


“GaN并不適用所有的應(yīng)用環(huán)境,比如在某些應(yīng)用中要求漏電流小、開關(guān)頻率比較高,GaN比較合適,對于某些實際通過電流沒有那么大的應(yīng)用,就體現(xiàn)不出GaN低導(dǎo)通電阻的優(yōu)勢,所以要根據(jù)不同應(yīng)用選擇不同的開關(guān)技術(shù)?!彼f。


第三,可以在不同功率水平、不同電壓應(yīng)用中對硅、GaN和SiC進(jìn)行無縫切換。而更高電壓、更大功率器件擴(kuò)展了系統(tǒng)性能的選擇范圍,一直是行業(yè)的發(fā)展方向,功率越高、耐壓越高,就越有助于降低成本。


第四,對客戶來說,GaN沒有供應(yīng)鏈問題,生產(chǎn)過程不像SiC那么復(fù)雜,成本也會繼續(xù)下降。


他最后強(qiáng)調(diào),PI的賣點是價值。除了通過自己產(chǎn)品的高度集成,帶給客戶價值以外,也希望能夠幫助客戶建立他們自己產(chǎn)品的品牌價值。未來,PI還會推出更高耐壓的GaN產(chǎn)品,并致力于將GaN的效率優(yōu)勢擴(kuò)展到更廣泛的應(yīng)用領(lǐng)域,包括目前已經(jīng)使用SiC技術(shù)的應(yīng)用領(lǐng)域。PowiGaN?產(chǎn)品的未來,值得我們?nèi)テ诖?/p>


來源:PSD功率系統(tǒng)設(shè)計  作者:劉洪



免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問題,請聯(lián)系小編進(jìn)行處理。


推薦閱讀:


為消防栓裝上航順芯HK32L08x,賦能智慧消防,隨時應(yīng)對險情

壓力傳感器的類型選擇與設(shè)計考量

三線制PT100測溫容易忽略的設(shè)計細(xì)節(jié)

消除“間隙”:力敏傳感器如何推動新穎的HMI設(shè)計

兆易創(chuàng)新張靜:“半導(dǎo)體產(chǎn)業(yè)波動周期”下的存儲市場發(fā)展趨勢

特別推薦
技術(shù)文章更多>>
技術(shù)白皮書下載更多>>
熱門搜索
壓控振蕩器 壓力傳感器 壓力開關(guān) 壓敏電阻 揚(yáng)聲器 遙控開關(guān) 醫(yī)療電子 醫(yī)用成像 移動電源 音頻IC 音頻SoC 音頻變壓器 引線電感 語音控制 元件符號 元器件選型 云電視 云計算 云母電容 真空三極管 振蕩器 振蕩線圈 振動器 振動設(shè)備 震動馬達(dá) 整流變壓器 整流二極管 整流濾波 直流電機(jī) 智能抄表
?

關(guān)閉

?

關(guān)閉